Tom was born in 1988
Ben was born in 2000

Tom and Ben have the same birthday.
The ratio of Tom's age to Ben's age on their birthday in 2001 was $13: 1$.

What was the ratio of Tom's age to Ben's age on their birthday in $2003 ?$
Write the ratio in its simplest form.
\square

In what year was the ratio of Tom's age to Ben's age 3:1?

A box contains bags of crisps.
Each bag of crisps weighs $\mathbf{2 5}$ grams.

Altogether, the bags of crisps inside the box weigh 1 kilogram.
How many bags of crisps are inside the box?
es. \qquad

Coins

(a) Jo has these 4 coins.

Jo is going to take one of these coins at random.
Each coin is equally likely to be the one she takes.

Show that the probability that it will be a $\mathbf{1 0}$ p coin is $\frac{\mathbf{1}}{\mathbf{2}}$ es.
(b) Colin has 4 coins that total 33p.

He is going to take one of his coins at random.
What is the probability that it will be a $\mathbf{1 0}$ p coin?
You must show your working.

Travel to work
(a) I pay £16.20 to travel to work each week.

I work for 45 weeks each year.
How much do I pay to travel to work each year? Show your working.
\square
(b) I could buy one season ticket that would let me travel for all 45 weeks. It would cost $£ 630$

How much is that per week?

1 mark

Shoe sizes in Britain and Germany are different.
The rule below shows how to change a British shoe size to a German shoe size.

Multiply the British shoe size by1.25
then add 32,
then round the answer to the nearest whole number.

Tom's British shoe size is 7, Karl's British shoe size is $7 \frac{1}{2}$
They say:
'The rule shows that we have the same German shoe size'.
Are they correct? Tick (Σ^{\prime}) Yes or No.

Show your working to explain your answer.

6
 Cotton reel

(a) The cross-section of a cylindrical cotton reel is a circle.

The diameter of this circle is $\mathbf{3 \mathbf { c m }}$.

What is the circumference of this circle?
\qquad
1 mark
(b) 91 metres of cotton goes round the cotton reel.

About how many times does the cotton go round the reel?
Show your working, and give your answer to the nearest ten.
\qquad

Kate buys 24 cans of lemonade.
She buys the cans in packs of 4
Each pack costs £1.20

Pack of 4 Cost $£ 1.20$
Steve buys 24 cans of lemonade.
He buys the cans in packs of 6
Each pack costs £1.60

Pack of 6 Cost $£ 1.60$

Kate pays more for her 24 cans than Steve pays for his 24 cans.
How much more?
\qquad

8
 Toilet rolls

A shop sells toilet rolls.
You can buy them in packs of 9 or packs of 6

Pack of 9 toilet rolls $£ 3.90$

Pack of 6 toilet rolls £2.50

Which pack gives you better value for money?
You must show your working.

Each year, there is a tennis competition in Australia and another one in France.
The table shows how much money was paid to the winner of the men's competition in each country in 2002.

Country	Money
Australia	1000000 Australian dollars $(£ 1=2.70$ Australian dollars $)$
France	780 000 Euros $(£ 1=1.54$ Euros $)$

Which country paid more money?
You must show your working.

Tick (\checkmark) the country that paid more.

Australia

10 CD player
(a) Work out the missing values.

(b) The cost of a CD player is $£ 84$ plus $17 \frac{1}{2} \%$ tax.

What is the total cost of the CD player?
You can use part (a) to help you.
es.

2 marks

Pens

Two shops sell packs of pens.

Supermarket
Pack of 5 pens
$£ 6.25$

Village shop
Pack of 6 pens
$£ 7.20$

I want to buy 30 pens.
In which shop are the pens cheaper?
You must show your working.

Tick (\checkmark) your answer.
${ }^{4}$ \square Supermarket \square Village shop
2 marks
12 A bus company has 62 minibuses.
On average, each minibus travels 19 miles on a gallon of fuel and goes $\mathbf{2 8 4}$ miles each day. The Company says it needs about $\mathbf{1 0 0 0}$ gallons of fuel every day.

Approximate these numbers and make an estimate to show whether what the company says is about right.

You must show how you got your answer.

13427 children visit a castle.
They go in groups of 15. One group has less than 15.
Every group of children has one adult with them.
How many adults will need to go?

Mr Todd buys 7 drinks at 48p each and 8 drinks at 52p each.
What is the total cost of the 15 drinks?
You must show your working.

| height in cm | 10 | 12 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| length in cm | 16 | 20 | 24 | 28 |

For each frame, the length is twice the height, subtract 4.
What is the length of a frame which has a height of $\mathbf{3 6} \mathbf{c m}$?

For each frame, the length (L) is twice the height (H), subtract 4.
Write this in symbols.

A new frame has its length twice its height.
It is made with 126 cm of wood.
What is the length of this frame?

2 parts of red paint with 3 parts of blue paint make purple.
Susan has $\mathbf{5 0} \mathbf{~ m l}$ of red and $\mathbf{1 0 0} \mathbf{~ m l}$ of blue.
What is the maximum amount of purple she can make?

A school collects money for charity.
This chart shows how much has been collected.

The target is $£ \mathbf{3 0 0 0}$.
Estimate how much more money the school needs to reach the target.

Anil says,
The chart shows that we will reach the target in two months.
Use the chart to explain why Anil may be wrong.
\qquad
\qquad
\qquad

The 10 books take up $\mathbf{2 8}$ centimetres.

What is the mean (average) thickness of her books?

The shelf is $\mathbf{1 2 0}$ centimetres long.
Vicki fills the shelf with a mixture of books like the first ten books.
Estimate how many books she can get on the $\mathbf{1 2 0} \mathbf{~ c m}$ shelf.

Kelly chooses a section of a newspaper.
It has $\mathbf{5 0}$ words in it.
She draws a bar chart of the number of letters in each word.

What fraction of the 50 words have more than 6 letters?

1 mark
Kelly says,
23 of the 50 words have less than 5 letters.
This shows that nearly half of all the words used in the newspaper have less than 5 letters in them.

Explain why she could be wrong.
\qquad
\qquad
\qquad

Nicola has $£ 50$.
She buys 3 flowerpots and a spade.
How much money does she have left?

Seeds are $£ 1.45$ for a packet.

Steffan has $£ 10$ to spend on seeds.
What is the greatest number of packets he can buy?

1 mark

20 Every day a machine makes $\mathbf{1 0 0} \mathbf{0 0 0}$ paper clips which go into boxes.

A full box has 120 paper clips.
How many full boxes can be made from $\mathbf{1 0 0} \mathbf{0 0 0}$ paper clips?

Each paper clip is made from 9.2 centimetres of wire.
\qquad

What is the greatest number of paper clips that can be made from $\mathbf{1 0}$ metres of wire?

Cheddar cheese costs $£ 7.50$ for 1 kg .
Marie buys 200 grams of cheddar cheese.
How much does she pay?

1 mark

Cream cheese costs $£ 3.60$ for 1 kg .
Robbie buys a pot of cream cheese for 90p.

How many grams of cream cheese does he buy?

22

2753 people go to a sports event.
Each person pays £2.30 for a ticket.
What is the total amount of ticket money collected?

1 mark

Programmes cost 65p each.
The total money from programme sales is $£ 612.95$
How many programmes are sold?

Shenaz buys a pack of $\mathbf{2 4}$ cans of cola for $\mathbf{£ 6 . 0 0}$

What is the cost of each can?

6 green apples for 75 p

10 red apples for 90 p

Jason bought some bags of green apples and some bags of red apples.
He spent $£ 4.20$
How many bags of each type of apples did he buy?

Nika and Hassan bought some bags of apples.
Nika says,
'I bought more apples than Hassan, but I spent less money.'
Explain how this is possible.
\qquad
\qquad
\qquad

In 2008, two archers called Park and Zhang were in the women's final.

Both archers shot 12 arrows.
Zhang won the final by 1 point.

Complete the table for Zhang below.
You can use the space to show your calculations.

30 children are going on a trip.
It costs $£ 5$ including lunch.
Some children take their own packed lunch.
They pay only £3
The 30 children pay a total of $£ 110$
How many children are taking their own packed lunch?

A packet contains 1.5 kilograms of guinea pig food.
Remi feeds her guinea pig $\mathbf{3 0}$ grams of food each day.

How many days does the packet of food last?

A box contains 220 matches and weighs 45 grams.
The empty box weighs 12 grams.
Calculate the weight of one match.

29

The cost for using a minibus is $£ 1.36$ for each kilometre.
8 friends go on a 114 kilometre journey.
They share the cost equally.
How much does each person pay?

method																	
												$£$					
												£					

Emily has $£ 5$ to spend on peaches.
She decides to buy only small peaches or only large peaches.
How many more small peaches than large peaches can she buy for $£ 5$?

Emily makes 250 grams of a snack mixture.
15% of the weight is raisins, 25% is banana chips and the rest is peanuts.
How many grams of peanuts does she use?

Here are three questions and answers about bananas.

On average, how much does each person pay for bananas in supermarkets?
Answer: 56p per kg

On average, what quantity of bananas does each person eat in one year?
Answer: 10kg

Who gets money from the sale of bananas?

Answer:

How much of the money each person pays for bananas in one year goes to the growers?

The photograph shows a crop circle that was made in Mexico.
People flattened crops to make a pattern inside a circle.

The photograph has been provided courtesy of Greenpeace

Some people are planning to make a crop circle.
Here is what they plan to do:

- They will make a circle of radius $\mathbf{3 0} \mathbf{~ m}$.
- They will flatten about $\mathbf{6 0 \%}$ of the area of the circle.

- Together, they can flatten $450 \mathrm{~m}^{2}$ in one hour.

About how many hours do the people plan to spend making the crop circle?
You will need to use this formula:
The area of a circle is $3.142 \times(\text { radius })^{2}$

34 A farmer has $£ 1200$ to buy apple trees and pear trees.

Apple trees cost $£ 24.75$ each.
Pear trees cost £12.50 each.

He buys 35 apple trees.

How many pear trees can he buy with the money he has left?

Here is part of the morning train timetable from Perth to Midland in Australia.

Perth	$07: 11$	$07: 20$	$07: 27$	$07: 35$	$07: 43$	$07: 55$
Maylands	-	$07: 28$	$07: 33$	$07: 43$	$07: 49$	$08: 03$
Ashfield	-	-	$07: 38$	-	$07: 54$	-
Success Hill	$07: 25$	-	$07: 41$	-	$07: 57$	-
Midland	$07: 32$	$07: 41$	$07: 48$	$07: 56$	$08: 05$	$08: 16$

What time is the first train from Maylands that stops at Success Hill?

1 mark

Mr Evans is in Perth and wants to be in Midland by 08:00
What is the time of the latest train he can take from Perth?

1 mark

1 (a) 5:1
Do not accept ratio not simplified, eg

- 15:3

(b) 2006
or
Identifies that Tom will be 18 and Ben will be 6, eg:

- $3: 1=18: 6$
- $13: 1$
$14: 2=7: 1$
$15: 3=5: 1$
$16: 4=4: 1$
17:5
18: 6

240
! Incorrect units given Ignore

3 (a) Gives a correct explanation, eg

- $2 / 4=1 / 2$
- Two of the four coins are $10 p$ so half of them are 10 p
- 20 p is $1 / 4$, so is 1 p, and $1 / 4+1 / 4+1 / 2=1$
- Each coin has $1 / 4$ chance and $1 / 4+1 / 4=1 / 2$

Accept minimally acceptable explanation, eg

- $2 / 4$
- Two out of four
- Two is half of four
- Two are tens, two not

Do not accept incomplete explanation, eg

- It's 50/50
- There are two tens, a twenty and a $1 p$
- There are two 10ps
- Half the coins are 10ps
- 20p is, so is $1 p 1$
(b) Identifies the values of the four coins as 20, 10, 2 and 1 and gives the probability $1 / 4$, or equivalent probability

! Values of coins identified but doubt expressed as to whether this is the only possible combination

Condone
Do not accept probability stated without values of coins identified
$4 \quad$ (a) $£ 729(.00)$
or Shows the digits 729, eg

- 72900
- 72.90
or
Shows a complete correct method with not more than one computational error, but with the decimal point correctly positioned, eg
- $20 \times 45=900$
$16 \times 45=8 \times 90=720$
$720+9$

64800
8100
73900 (error) so £739
-

(b) $£ 14$

Do not accept conceptual error, eg
1620
45
6480
8100
14580 so £145.80

1
[3]

5 Indicates Yes and gives a correct explanation that shows or implies both of the values 40.75 and 41.375 eg

- $7 \times 1.25+32=40.75,7.5 \times 1.25+32=41.375$, so they both round to 41
- $8.75+32$ rounds to 41 and so does $9.375+32$
- 8.75 gives 9 and 9.375 gives 9 before adding 32 , so they will end up the same
or Shows or implies both of the values 40.75 and 41.375 even if there is an incorrect or no decision, or incorrect further working eg
- Tom wears 40.8 and Karl wears 41.4 so they don't wear the same size
- 40.75 and 41.375 so they both wear 40
or
Shows the value 40.75 or 41 with correct working eg
- $7.5 \times 1.25+32=41$
or
The only error is to add 1.25 rather than multiplying
eg
- Indicates No and shows the values 40.75 and 40.25
- Indicates No and shows the values 41 and 40

Accept minimally acceptable explanation
eg, with Yes indicated

- They are both 41
- They are 40.75 and 41.375
! 40.75 rounded or truncated
Accept 41, 40.8 or 40.7
Do not accept 40
! 41.375 rounded or truncated
Accept 41, 41.4, 41.3, 41.38 or 41.37
Do not accept 42
! 40.75 from incorrect working
Note that pupils who add 1.25 rather than multiplying generate the shoe sizes 40.25 and 40.75
For 3 m or $\mathbf{2 m}$, do not accept explanations based on such misconceptions
eg
- They are both 41 as $7.5+1.25+32=41$
$7+1.25+32=41$

6 (a) 3 t or 9.4 or $9.42(\ldots)$ or 9.43 with no evidence of an incorrect method
! Answer of 9
Accept provided a correct method or a more accurate value is seen
(b) 970
! Follow through from part (a)
For 2 m , accept $9100 \div$ their (a), rounded correctly to the nearest ten, provided $9100 \div$ their (a) is not a multiple of 10 eg, from their (a) as 7.8, accept for $2 m$

- 1170
eg, from their (a) as 7, do not accept for 2 m
- 1300

2
or Shows or implies that the total length should be divided by the circumference, even if the units are incorrect or there are rounding or truncation errors
eg

- $9100 \div 9.42$
- $91 \div 3 \pi$
- Digits 96(...) or 97(...) seen

Accept for 1 m , follow through from part (a), even if their (a) is rounded or truncated before being used eg, from their (a) as 7.8, accept

- $9100 \div 8$
$7 \quad 80 p$
or Shows the value $0.8(0)$
or
Shows or implies a complete correct method with not more than one computational error
eg
- $6 \times 1.20-4 \times 1.60$
- $(120 \div 4-160 \div 6) \times 24$
- 7.40 (error) $-6.40=1.00$
or
Shows the value 720 or $7.2(0)$ and 640 or $6.4(0)$

Indicates the pack of 6 toilet rolls
and gives a correct justification, based on a pair of comparable values
eg

- The 6-pack costs £1. 25 for 3 rolls, but the 9-pack costs $£ 1.30$ for 3 rolls
- $3.9(0) \div 9=0.43(\ldots)$
$2.5(0) \div 6=0.41(\ldots)$
- For 9 rolls we have 3.90 and $2.50 \div 2 \times 3=3.75$
- 6 rolls: $390 \div 3 \times 2=260$, ie 10 p more
- The 3 extra toilet rolls in the 9 -pack cost $£ 1.40$, but in the 6 -pack 3 rolls cost $£ 1.25$
- If the 9 -pack were decreased by 3 rolls its price should go down by $£ 1.30$, but the difference is $£ 1.40$ so it's a better reduction
- 3 extra rolls cost $£ 1.40$ so 12 rolls using the large pack is $3.90+1.40=5.30$, whereas $2.50+2.50$ for the small pack is only 5.00

Shows a correct pair of comparable values but makes either an incorrect or no decision
or
Attempts to find a pair of comparable values, making not more than one computational or rounding error, then follows through to make their correct decision eg

- The 6-pack is $£ 1.30$ (error) for 3 rolls and so is the 9 -pack, so they are the same
- The 9-pack is $£ 3.90$ but should be
$2.50 \div 6 \times 9=0.41$ (rounding error) $\times 9$
$=3.69$ so 6 -pack is cheaper

Shows, or implies by a correct value, a correct method to calculate at least one value for comparison, even if there are computational or rounding errors
or
Shows the difference in price for 3, 6, 9 or 18 rolls, even if the comparable values or the methods to calculate them are not shown
eg

- The 6-pack is 5 p cheaper
- The big pack is 10 p more
- $15 p$ difference
- 30p less

For 3m, do not accept no decision
For 3m, accept correct decision and any pair of comparable values shown
Note that common pairs (in pounds) are:
1.3 and 1.25
(per 3 rolls)
$0.43(\ldots)$ and $0.41(\ldots)$ or 0.42 (per 1 roll)
(3.9 and) 3.75
(per 9 rolls)
2.6 (and 2.5)
(per 6 rolls)
7.8 and 7.5
(per 18 rolls)
15.6 and 15
(per 36 rolls)
23.4 and 22.5
(per 54 rolls)
1.4 and 1.25 [or 1.3]
(3 extra rolls)
2.3(...) and 2.4 (rolls per pound)
! Comparison is per 9 rolls or per 6 rolls but the given price is not restated
Condone
eg, for $3 m$ accept

- The 6-pack, because 9 rolls should be $£ 3.75$
! Units omitted, incorrect or inconsistent
Condone provided the pupil's intention is clear
eg, for $3 m$ accept
- The 6-pack, because $3.9(0) \div 9=43$

$$
2.5(0) \div 6=42
$$

! Additional incorrect working

Ignore

Note that common calculations are:

$$
\begin{array}{ll}
3.9 \div 3 \text { or } 2.5 \div 2 & \text { (per } 3 \text { rolls) } \\
3.9 \div 9 \text { or } 2.5 \div 6 & \text { (per } 1 \text { roll) } \\
2.5 \div 2 \times 3 & \text { (per } 9 \text { rolls) } \\
3.9 \div 3 \times 2 & \text { (per } 6 \text { rolls) } \\
3.9 \times 2 \text { or } 2.5 \times 3 & \text { (per } 18 \text { rolls) } \\
3.9 \times 4 \text { or } 2.5 \times 6 & \text { (per } 36 \text { rolls) } \\
3.9 \times 6 \text { or } 2.5 \times 9 & \text { (per } 54 \text { rolls) } \\
3.9-2.5 \text { or } 2.5 \div 2 \text { [or } 3.9 \div 3](3 \text { extra rolls) } \\
9 \div 3.9 \text { or } 6 \div 2.5 & \text { (rolls per pound) }
\end{array}
$$

9 Indicates France and gives a correct justification

- $1000000 \div 2.7=370370 .(\ldots)$, $780000 \div 1.54=506493 .(\ldots)$
- $\frac{10000000}{2.7}<\frac{780000}{1.54}$
- $1000000 \div 2.7 \times 1.54=570370 .(\ldots)$
- $780000 \div 1.54 \times 2.7=1367532 .(\ldots)$
or Indicates France and gives a partial justification eg
- $1000000 \approx \square £ 400000,780000 \approx \square £ 500000$
- Australia: 370

France: 506
[values truncated with no indication of method or that original values were of the same magnitude]
or
Gives a correct justification but makes an incorrect or no decision
or
Gives a correct justification with not more than one computational or rounding error, but follows through to make their correct decision

Accept for 2m, minimally acceptable justification
eg

- 370370 and 506493 (or 506 494) seen
- $\frac{1000000}{27}, \frac{780000}{154}$
- $1000000 \div 270=3703 .(\ldots)$ (or 3704), $780000 \div 154=5064 .(\ldots)($ or 5065 $)$
- 570 370.(...) seen
- 1367 532.(...) seen
! Values rounded or estimated
For 2m, accept values of 370 0(00) and 500 0(00) or better, 570000 or better, or 1400000 or better
Accept other estimates only if a correct method or a more accurate value is seen eg, accept
- $£ 1$ is about $2 \frac{1}{2}$ dollars, so 1000000 dollars is about $£ 400000$, $£ 1$ is about $1 \frac{1}{2}$ euros, so 780000 euros is about $£ 500000$

For $\mathbf{2 m}$ or 1 m , do not accept if justification simply repeats

 the decision madeeg

- 1000000 Australian dollars are less than 780000 euros

10 (a) Gives all three correct values, ie

8.4
4.2
2.1

or equivalent
! Units given
Ignore
or Gives two correct values
! Follow through
For 1m, allow follow through from an incorrect value that is correctly divided by 2 ,
provided their values are not $10,5,2 \frac{1}{2}$ or
$84,42,21$ 84, 42, 21
eg, for 1 m accept
-

0.84
0.42
0.21

8.4
4.3
2.15

(b) $£ 98.70$

! Follow through from part (a)

For $2 m$, allow follow through as $84+$ the sum of their three values from part (a), provided at least one of their values is not an integer, and the total is rounded or truncated to a whole number of pence
or Shows the digits 987
or
Shows or implies the addition of the three
values corresponding to $10 \%, 5 \%$ and $2 \frac{1}{2} \%$
eg

- $8.4+4.2+2.1$
- 14.7 seen
- The sum of their 3 values from part (a) seen [with or without addition to 84]
or
Shows or implies a complete correct method with not more than one computational error eg
- 1.175×84
- $84+\frac{17.5}{100} \times 84$

Indicates the village shop
and gives a correct justification, based on correctly calculating a pair of comparable values eg

- At the supermarket $6.25 \times 6=37.5(0)$

At the village shop $7.20 \times 5=36$

- $6.25 \times 6-7.2 \times 5=1.5$
- $6.25 \div 5=1.25$, $7.20 \div 6=1.2(0)$
- $£ 75$ for 60 or $£ 72$ for 60
- For $£ 1$ you get $\frac{4}{5}$ of a pen or $\frac{5}{6}$ of a pen
- You pay 95 p extra for 1 more pen, but they're at least $£ 1.20$ each so it must be a better deal

Shows a correct pair of comparable values but makes either an incorrect or no decision
or
Shows a complete correct method for finding a pair of comparable values with not more than one computational or rounding error, and follows through to make their correct decision
eg

- $6 \times 6.25,5 \times 7.20$ [village shop indicated]
- $6.25 \div 5=1.05$ (error),
$7.20 \div 6=1.20$ [supermarket indicated]
or
Makes a correct decision but the justification uses only the difference between a pair of comparable values
eg
- The packs of 6 would be $£ 1.50$ cheaper
- A pen is 5 p cheaper

For 2m, do not accept no decision
Accept for 2m, correct decision and any pair of comparable values shown
Note that common pairs (in pounds) are:
37.5 and 36
1.25 and 1.2
6.25 and 6
7.5 and 7.2

75 and 72
18.75 and 18
0.95 and 1.2 [or 1.25]
0.8 and 0.83(...)
(per 30 pens)
(per 1 pen)
(per 5 pens)
(per 6 pens)
(per 60 pens)
(per 15 pens)
(1 extra pen)
(pens per pound)
! For 2 m or 1 m , comparison is per 5 pens or per 6 pens but the given price is not restated
Condone
eg, for $2 m$ accept

- At the supermarket, 6 pens would be $£ 7.50$

Additional incorrect working Ignore

12 (a) Sensible approximation of at least two of 62, 19, and 284, eg:

- 62, 20, 300
- 60, 19, 300
- 60,20,284
- 60, 20, 300

Direct calculation using the numbers given without approximation of at least 2 of them should not be awarded a mark.
(b) Correct computation using the approximations in answer (a), eg:

- $62 \times 300 \div 20=930$
- $60 \times 300 \div 19=947$
- $60 \times 284 \div 20=852$
- $60 \times 300 \div 20=900$

13 (a) 29
(b) Award TWO marks for $£ 7.52$ with appropriate working (see below), even if there is an error in the working.

If answer is incorrect, award ONE mark for use of an appropriate method and a partially correct computation, eg:

- $7 \times 48+8 \times 52=336+406$ (incorrect second part)
- $7(48+52)+52=7 \times 100+52=742$ (incorrect)
- $7 \times 40+7 \times 8+8 \times 50+8 \times 2=7 \times 47 \times 16 \times 58 \times 2$ (incorrect)

Accept $£ 7.52$ OR $£ 752 p$ OR $£ 752$ OR answers in words OR combination of numbers and words.
Mark can only be awarded for evidence of calculation taking place.
It cannot be awarded if the expression is set out but partially correct computation is not in evidence.

Up to 2
[3]
14 (a) Award TWO marks for correct answer of 68 cm .
If answer is incorrect award ONE mark if any method is used
which shows evidence of doubling 36 AND subtracting 4, eg:

- $30+6 \times 2-4$

Up to 2
(b) Award TWO marks for expressions such as:

- $\mathrm{L}=2 \mathrm{H}-4$
- $L=2(H-2)$
- $\mathrm{L}=\mathrm{H}+\mathrm{H}-4$.

If incorrect award ONE mark for evidence of multiplication of H by 2 ,
eg: 2H H2 H $\times 2 \mathbf{2} \times \mathbf{H} \mathbf{2 . H} \mathbf{H} .2$
or ONE mark for evidence of subtraction of 4 , eg: L=H-4

Do not accept $\boldsymbol{L}=\mathbf{x} \mathbf{2 - 4} \mathbf{= H}$
Do not award marks for a repeat of the formula in words as given in the question.

Up to 2
(c) Award TWO marks for 42 cm , even if there are errors in the working.

If answer is incorrect, award ONE mark for evidence that the relationship "length is twice the height" has been used, eg:

- $2 \mathrm{H}+4 \mathrm{H}=126$
- $\mathrm{H}+2 \mathrm{H}+\mathrm{H}+2 \mathrm{H}=126$
- $20+40+20+40=120$

The answers may be implicit, eg:

- $21+42+21+42=126$
(Two marks)
- $126 \div 6=21 \times 2=42$ (Two marks)
- $126 \div 3$ (answer incomplete One mark)

Up to 2

15 Award TWO marks for the correct answer of 125 ml .
If answer is incorrect, award ONE mark for evidence of an appropriate method, eg:

- $50+(3 \times 50 \div 2)$
- $50=2 \times 25$
$3 \times 25=75$
$50+75$
Accept answer without units.
Up to 2

16 (a) Answer in the range of $£ 600$ to $£ 650$, inclusive.
(b) Explanation which indicates that the amounts raised each month can vary AND that the money raised may be either insufficient to reach the target in 2 months or enough to reach the target in 1 month, eg

- 'They could have two months like December'
- 'In April they might get more money than any month before'

Accept appropriate explanations related to the answer given in 19a, even if this is incorrect.
Do not accept vague or arbitrary reasons, eg:
'They might not get any more money';
'People have spent all their money on charity';
'It's not enough time'.
(a) Award TWO marks for correct answer of 2.8 cm .

If answer is incorrect, award ONE mark for any appropriate calculation even if the answer is incorrect, eg:

- $28 \div 10=$ wrong answer.

A calculation MUST be performed for award of one mark.
Up to 2
(b) Award TWO marks for WHOLE NUMBER ANSWER in the range 40 to 50 inclusive, eg:

- 42.8

If answer is outside range, award ONE mark for an appropriate calculation, eg:

- $120 \div 28 \times 10=$ wrong whole number answer.
- $120 \div 30 \times 10=$ wrong whole number answer.
- 30 cm is 10 books.

60 cm is 20 books.
120 cm is ... wrong answer.
If answer is outside range, a calculation MUST be performed for award of one mark. If calculation is based upon incorrect answer to 16a, award TWO marks for correct calculation using an appropriate strategy AND rounding of answer to whole number, even if outside range 40-50, eg:

- $120 \div$ answer to $16 a=$ rounded whole number.

OR
ONE mark if there is either an error in calculation or failure to round to whole number.
(b) Explanations which imply that the results from a small sample cannot safely be applied to a large one, eg:

- 'You could be wrong because every section is different'
- 'The article is only a small proportion of the whole newspaper'
- 'The rest could be different'
- 'You can't judge a whole newspaper by one article'

Do not accept vague or arbitrary explanations such as:
'She might not have counted right';
'The words in the newspaper might be big';
'There are more bigger words than small'.

19 (a) Award TWO marks for a correct answer of $£ 2.10$
Accept £2.10p OR £2 10 OR £2 10p
Do not accept for TWO marks £210
OR incorrect representations of money values, eg
£2.1 OR £210p
If answer is incorrect, award ONE mark for evidence of an appropriate method, eg,
Calculation need not be performed for the award of the mark, but a complete method must be apparent.
$50-(12.75 \times 3+9.65)$
Accept £2.1 OR £210 OR £210p as evidence of an appropriate method for ONE mark.
up to 2
(b) 6

Do not accept non-integer answers such as 6.8
1
(a) Award TWO marks for the correct answer of 833.

Do not award TWO marks for answers which are not whole numbers, eg 833.33

If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg $100000 \div 120$.

Accept as evidence of an appropriate method, $833.33 \ldots$ rounded to one or more decimal places.

Calculation need not be completed for the award of the mark.
(b) Award TWO marks for the correct up to answer of 108.

Do not award TWO marks for answers which are not whole numbers, eg 108.6

If the the answer is incorrect, award ONE mark for evidence of an appropriate method, eg: $1000 \div 9.2$

Accept as evidence of an appropriate method, 109 OR 108.695 rounded to one or more decimal places.

Calculation need not be completed for the award of the mark.
For ONE mark, accept correctly rounded answers based upon the wrong conversion of units, eg

$$
\frac{10 \times 10}{9.2}=10.8=10
$$

21
 (a) $£ 1.50$

(b) Award TWO marks for the correct answer of 250

If the answer is incorrect, award ONE mark for evidence of appropriate method, eg

- $360 \div 90=4$
- $1000 \div 4$

Answer need not be obtained for the award of ONE mark.
Up to 2

22 (a) $£ 6331.90$
Accept £6331.90p OR £6331 90
Do not accept £6331.9
(b) Award TWO marks for the correct answer of 943.

If the answer is incorrect, award ONE mark for evidence of an appropriate method, eg $61295 \div 65$ OR $612.95 \div 0.65$

Do not accept $612.95 \div 65$.
Calculation need not be performed for the award of the mark.

23 Award TWO marks for the correct answer of 25p OR £0.25 OR 25 pence.
If the answer is incorrect, award ONE mark for evidence of appropriate working, eg $600 \div 24=$ wrong answer.

Accept £0 25 OR £0.25p OR £0 25p OR 25 OR 0.25 OR £0-25.
Calculation must be performed for the award of ONE mark.
Up to 2

24 (a) Award TWO marks for correct answer as shown:

bags of red apples

Both numbers must be correct for the award of the marks.
If the answer is incorrect, award ONE mark for evidence of appropriate working, eg Listing of cost of apples:

75	90
150	180
225	270

Calculation must be performed for the award of ONE mark.
Up to 2
(b) An explanation that shows how it is possible to buy more apples but spend less money, eg

- 'Nika buys 2 bags of red apples, giving 20 apples for $£ 1.80$, and Hassan buys 3 bags of green apples, giving 18 apples for £2.25'.

Do not accept vague or arbitrary explanations, eg

- 'She got bigger bags than he did';
- She bought a lot of small ones'.

Ignore slight errors in arithmetic that do not contradict the explanation.

25 Completes the table for Zhang correctly with frequencies of 7 (for 9 points) and 4 (for 10 points), ie

or
Shows one of the values 109, 110, 102 or 103

OR

Shows a correct method for Zhang that scores one more than the total for Park.
! For 1m, a total that uses less than 12 arrows for Zhang Condone
! For 1m, accept a follow through for their incorrect total for Park

Award TWO marks for the correct answer of 20
If the answer is incorrect, award ONE mark for evidence of appropriate method, eg

- $30 \times £ 5=£ 150$
$£ 150-£ 110=£ 40$
$£ 40 \div £ 2=20$
- $£ 110 \div 30=£ 3$ each, with $£ 20$ left over
$£ 20 \div £ 2=10$
$30-10=20$

OR

a trial and improvement method, eg

- $30 \times £ 3=£ 90$
$10 \times £ 3+20 \times £ 5=£ 130$
$15 \times £ 3+15 \times £ 5=£ 120$

Calculation must be performed for the award of ONE mark.

A 'trial and improvement' method must show evidence of improvement, but a final answer need not be reached for the award of ONE mark.

Up to 2 (U2)
[2]
27 Award TWO marks for the correct answer of 50
If the answer is incorrect, award ONE mark for evidence of appropriate working using common units, eg

- $1500 \div 30=$ wrong answer

Calculation must be performed for the award of ONE mark.
Do not accept $1.5 \div 30$ as evidence of appropriate working.
Up to 2

Award TWO marks for the correct answer of 0.15
If the answer is incorrect, award ONE mark for evidence of appropriate method, eg
$45-12=33$
$33 \div 220$

Accept equivalent fractions, eg $\frac{3}{20}$
Accept for ONE mark 0.015 OR 15
OR 1.5 OR 150 as evidence of appropriate method.
Answer need not be obtained for the award of ONE mark.
Up to 2

29 Award TWO marks for the correct answer of $£ 19.38$
If the answer is incorrect, award ONE mark for evidence of appropriate method, eg
$114 \times 1.36 \div 8$
OR
$114 \times 136 \div 8$
Accept for ONE mark £1938 OR £1938p as evidence of appropriate working.
Answer need not be obtained for the award of ONE mark.
Up to 2
[2]

Award TWO marks for the correct answer of 13
If the answer is incorrect, award ONE mark for evidence of appropriate method, eg
$500 \div 15=33$
$500 \div 25=20$
$33-20$

Award ONE mark for an answer of $13 \frac{1}{3}$ OR 13. 3 OR 13.3 OR 13.33, etc.

Award ONE mark for sight of 20 AND 33 with no evidence of an incorrect method.
Answer need not be obtained for the award of ONE mark.
Up to 2

Award TWO marks for the correct answer of 150
If the answer is incorrect, award ONE mark for evidence of appropriate working, eg:

- $15+25=40$
$100-40=60$
10% of $250=25$
$25 \times 6=$ wrong answer

OR

- $100 \%-40 \%=60 \%$
60% of $250=$ wrong answer
OR
- 15% of $250=37 \frac{1}{2}$
25% of $250=62 \frac{1}{2}$
$250-37 \frac{1}{2}-62 \frac{1}{2}=$ wrong answer
Working must be carried through to reach an answer for the award of ONE mark.

Up to 2
$32 \quad 16.8 \mathrm{p}$ or 17 p or equivalent
or
Shows the digits 168 or 17
or
Shows a complete correct method with not more than one computational or rounding error eg

- $56 \times 10 \times 3 \div 100$
- $5.6(0) \times 0.03$
- $560 \div 100=5.6$
$6 p$ (premature rounding) $\times 3=18$
! Money
See general guidance
or
Shows or implies at least two of these three steps correctly:

1. A correct method for evaluating the area of the circle in which the squaring is interpreted correctly
2. A correct method for finding 60% of a quantity
3. Division by 450
eg:

- Shows the value 3.7(...) or 3.8 [1, 2 and 3 but rounding omitted]
- Shows the value 1696.(...) or 1697 [1 and 2]
- $\pi \times 900 \times 6 \div 10$ [1 and 2]
- $3.142 \times 30^{2} \times 60 \div 100 \div 450[2$ and 3]
- $\quad 3.142 \times 30^{2}=188.52$ (error)
$188.52 \times 0.6 \div 450=0.25(\ldots)$ [2 and 3]
- 2827.(...) $\div 450$ [1 and 3]

Do not accept Ambiguous implication for method eg, 6.284 to imply 1 and 3
or
Shows or implies one of the three steps above correctly, eg:

- Shows the value 2827.(...) or 2828 [1]
- $\quad 3.142 \times 900$ [[1] $]$
- $\pi \times 30 \times 30$ [1]
- 60% of 188.52 (error) $=113 .(\ldots)$ [2]
- $3.142 \times 30=94.26$ (error)
$94.26 \div 450=0.2(\ldots)[3]$
or
Shows or implies a complete method with not more than one computational error or rounding error
eg
- $35 \times 24.75=860$ (error)

$$
1200-860=340
$$

$$
340 \div 12.5=27.2
$$

$$
\text { Answer = } 27
$$

- $(1200-35 \times 24.75) \div 12.5$
- $1200-866.25=333.75$
$333.75 \div 12.5$
or

26.7 seen

or
Shows the correct total for the trees, ie £1191.25
or
Shows the correct change, ie $£ 8.75$
Do not accept answer of 27 without a correct method shown or implied
! Method used for $\div 12.5$ is repeated subtraction
Do not accept as a correct method

35 (a) 07:33
The answer is a specific time.
(b) 07:35

The answer is a specific time.

